
Liang, Introduction to Java
Programming, Eleventh Edition, (c)

2017 Pearson Education, Inc. All
rights reserved.

1

Chapter 3 Selections

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 2

Relational Operators

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 3

The boolean Type and Operators
Often in a program you need to compare two
values, such as whether i is greater than j. Java
provides six comparison operators (also known as
relational operators) that can be used to compare
two values. The result of the comparison is a
Boolean value: true or false.

boolean b = (1 > 2);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 4

Problem: A Simple Math Learning Tool

Run

This example creates a program to let a first grader
practice additions. The program randomly
generates two single-digit integers number1 and
number2 and displays a question such as “What is
7 + 9?” to the student. After the student types the
answer, the program displays a message to indicate
whether the answer is true or false.

AdditionQuiz

http://html/AdditionQuiz.bat
https://liveexample.pearsoncmg.com/html/AdditionQuiz.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 5

One-way if Statements

if (boolean-expression) {
 statement(s);
}

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area"
 + " for the circle of radius "
 + radius + " is " + area);
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 6

Simple if Demo

Run

Write a program that prompts the user to enter an integer. If the
number is a multiple of 5, print HiFive. If the number is divisible
by 2, print HiEven.

SimpleIfDemo

http://html/SimpleIfDemo.bat
https://liveexample.pearsoncmg.com/html/SimpleIfDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 7

The Two-way if Statement
if (boolean-expression) {
 statement(s)-for-the-true-case;
}
else {
 statement(s)-for-the-false-case;
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 8

if-else Example
if (radius >= 0) {
 area = radius * radius * 3.14159;

 System.out.println("The area for the “
 + “circle of radius " + radius +
 " is " + area);
}
else {
 System.out.println("Negative input");
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 9

Multiple Alternative if Statements

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 10

TIP

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 11

CAUTION

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 12

Problem: An Improved Math Learning Tool
This example creates a program to teach a
first grade child how to learn subtractions.
The program randomly generates two
single-digit integers number1 and number2
with number1 >= number2 and displays a
question such as “What is 9 – 2?” to the
student. After the student types the answer,
the program displays whether the answer is
correct. SubtractionQuiz Run

https://liveexample.pearsoncmg.com/html/SubtractionQuiz.html
http://html/SubtractionQuiz.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 13

Logical Operators
Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 14

Truth Table for Operator !
p !p Example (assume age = 24, weight = 140)

true false !(age > 18) is false, because (age > 18) is true.

false true !(weight == 150) is true, because (weight == 150) is false.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 15

Truth Table for Operator &&
p1 p2 p1 && p2 Example (assume age = 24, weight = 140)

false false false (age <= 18) && (weight < 140) is false, because both

conditions are both false.

false true false

true false false (age > 18) && (weight > 140) is false, because (weight

> 140) is false.

true true true (age > 18) && (weight >= 140) is true, because both

(age > 18) and (weight >= 140) are true.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 16

Truth Table for Operator ||
p1 p2 p1 || p2 Example (assume age = 24, weihgt = 140)

false false false

false true true (age > 34) || (weight <= 140) is true, because (age > 34)

is false, but (weight <= 140) is true.

true false true (age > 14) || (weight >= 150) is false, because

(age > 14) is true.

true true true

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 17

Truth Table for Operator ^
p1 p2 p1 ^ p2 Example (assume age = 24, weight = 140)

false false false (age > 34) ^ (weight > 140) is true, because (age > 34) is false

and (weight > 140) is false.

false true true (age > 34) ^ (weight >= 140) is true, because (age > 34) is false

but (weight >= 140) is true.

true false true (age > 14) ^ (weight > 140) is true, because (age > 14) is

true and (weight > 140) is false.

true true false

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 18

Examples
System.out.println("Is " + number + " divisible by 2 and 3? " +

 ((number % 2 == 0) && (number % 3 == 0)));

System.out.println("Is " + number + " divisible by 2 or 3? " +

 ((number % 2 == 0) || (number % 3 == 0)));

 System.out.println("Is " + number +

 " divisible by 2 or 3, but not both? " +

 ((number % 2 == 0) ^ (number % 3 == 0)));

TestBooleanOperators

Run

https://liveexample.pearsoncmg.com/html/SubtractionQuiz.html
http://html/TestBooleanOperators.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 19

Problem: Determining Leap Year?

This program first prompts the user to enter a year as
an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by
100, or it is divisible by 400.

 (year % 4 == 0 && year % 100 != 0) || (year % 400
== 0)

LeapYear Run

https://liveexample.pearsoncmg.com/html/LeapYear.html
http://html/LeapYear.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 20

switch Statement Rules

switch (switch-expression) {
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 …
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
}

The switch-expression must
yield a value of char, byte,
short, or int type and must
always be enclosed in
parentheses.

The value1, ..., and valueN must
have the same data type as the
value of the switch-expression.
The resulting statements in the
case statement are executed when
the value in the case statement
matches the value of the
switch-expression. Note that
value1, ..., and valueN are
constant expressions, meaning that
they cannot contain variables in
the expression, such as 1 + x.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 21

switch Statement Rules

The keyword break is optional,
but it should be used at the end of
each case in order to terminate the
remainder of the switch statement.
If the break statement is not
present, the next case statement
will be executed.

switch (switch-expression) {
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 …
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
}

The default case, which is
optional, can be used to perform
actions when none of the specified
cases matches the
switch-expression. When the value in a case statement matches the value

of the switch-expression, the statements starting from
this case are executed until either a break statement or
the end of the switch statement is reached.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 22

Trace switch statement

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Weekday"); break;
 case 0:
 case 6: System.out.println("Weekend");
}

Suppose day is 2:

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 23

Conditional Operators
if (x > 0)
 y = 1
else
 y = -1;

is equivalent to

y = (x > 0) ? 1 : -1;
(boolean-expression) ? expression1 : expression2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 24

Conditional Operator

if (num % 2 == 0)
 System.out.println(num + “is even”);
else
 System.out.println(num + “is odd”);

System.out.println(
 (num % 2 == 0)? num + “is even” :
 num + “is odd”);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 25

Operator Precedence
● var++, var--
● +, - (Unary plus and minus), ++var,--var
● (type) Casting
● ! (Not)
● *, /, % (Multiplication, division, and remainder)
● +, - (Binary addition and subtraction)
● <, <=, >, >= (Relational operators)
● ==, !=; (Equality)
● ^ (Exclusive OR)
● && (Conditional AND) Short-circuit AND
● || (Conditional OR) Short-circuit OR
● =, +=, -=, *=, /=, %= (Assignment operator)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 26

Operator Precedence and Associativity

The expression in the parentheses is evaluated first.
(Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.) When
evaluating an expression without parentheses, the
operators are applied according to the precedence rule and
the associativity rule.

If operators with the same precedence are next to each
other, their associativity determines the order of
evaluation. All binary operators except assignment
operators are left-associative.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 27

Operator Associativity
 When two operators with the same precedence

are evaluated, the associativity of the operators
determines the order of evaluation. All binary
operators except assignment operators are
left-associative.

 a – b + c – d is equivalent to ((a – b) + c) – d
 Assignment operators are right-associative.

Therefore, the expression
 a = b += c = 5 is equivalent to a = (b += (c = 5))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 28

Example
Applying the operator precedence and associativity rule,
the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 is evaluated as
follows:

